第2章(下)真值函数——亦或不是?
最后更新于
最后更新于
那么,所有这些与我们一开始提出的问题有何关系呢?让我们回到我在上一章结束时提出的问题:什么是一个情形?一个自然的想法是,不管情形是什么,它确定了每个语句的真值。因此,比如,在某个特定情形中,女王富有为真而猪会飞为假。在另一个情形中,女王富有为假而猪会飞为真。(注意这些情形可以纯粹是假设性的!)换言之,一个情形确定了每个相关语句为真或为假。这里的相关语句不包含“且”、“或”或“非”的任何出现。给定关于某个情形的基本信息,包含这些词的语句的真值我们可以利用真值表算出。
例如,假设我们有下面的情形:
( 可能是语句“大黄有营养”,“”表示 被指派真值 ,等等。)那么,比方说 的真值是多少呢?我们计算这一真值的方法,和用乘法表与加法表计算 的数值完全一样。于是, 的真值表告诉我们, 的真值是 。又由于 的真值也是 , 的真值表告诉我们, 的真值为 。由于 的真值是 (译者注:这里其实不需要考虑这一条件), 的真值表告诉我们, 的真值为 。用这种逐步计算的方法,我们可以算出任何包含 和 出现的公式的真值。
现在,回想一下,上一章我们说一个推断是有效的,只要不存在使得所有前提都为真而结论不为真(为假)的情形。也就是说,一个推断是有效的,只要不存在对相关语句的真值指派,使得所有前提的真值都为 而结论的真值为 。比如,考虑我们前面见过的推断:。(我把它写成一行是为了给牛津大学出版社省点钱。)这里的相关语句是 和 。有 4 种真值组合,对每种组合我们都能算出前提和结论的真值。我们可以将结果表示如下:
前两列给出了 和 的真值的所有可能组合。后两列分别给出了前提和结论在每种组合下对应的真值。第 3 列与第 1 列相同,这是本例的一个巧合,之所以如此是因为,在这个特定的例子中,前提恰好是其中一个相关语句。第 4 列可以由析取的真值表读出。给定这些信息,我们就能看出这个推断是有效的,因为没有一行前提 为真而结论 不为真。
推断 的有效性如何呢?用同样的方法,我们得到:
这次有 5 列,因为有两个前提。前提和结论的真值可以由析取和否定的真值表读出。同样,没有一行两个前提都为真而结论不为真。因此,该推断是有效的。
同样,这个推断是有效的;而且现在我们明白了为什么它是有效的:没有一行两个前提都为真而结论为假。事实上,没有一行两个前提都为真。结论完全不起作用!有时逻辑学把推断的这种情形描述为空洞(vacuously)有效,只是因为前提永远也无法同时为真(译者注:所以无论结论是什么推断都有效)。
这就是我们最开始提出的问题的一种解决方案。根据这种解释,我们最初关于这个推断的直觉是错误的。毕竟,人们的直觉经常是误导性的。对每个人来说,地球似乎显然是不动的,直到他们学了一门物理课,才发现地球实际上在飞速穿越太空。我们甚至可以为我们的逻辑直觉为何出错提供解释。我们实际遇到的推断多数都不是空洞的那种。我们的直觉只在这类场合下得到发展,因而不是普遍适用的,正如你在学走路时养成的习惯(比如,不朝一边倾斜)在其他场合并不总是管用(比如当你学骑车时)。
约翰撞了头,且跌倒了。
约翰跌倒了,且撞了头。
第 1 句说的是,约翰撞了头,然后跌倒了。第 2 句说的是,约翰跌倒了,然后撞了头。很明显,当第二句为假时第一句也可以为真,反之亦然。 因此,不仅合取项的真值是重要的,哪一个引起了哪一个也是重要的。
你现在就来,或者我们会迟到;
这些问题我留给读者自己思考。我们已经考察的材料至少初步解释了某些逻辑工具是如何使用的。在后续章节里我们还会继续利用这些工具,除非有些章节中的观点明确将其推翻——有时会出现这种情况。
本章给出的逻辑工具只涉及某些类型的推断,还有很多其他类型的推断。我们只是刚开了个头。
本章要点
我们一开始提到的那个推断 的有效性如何呢?用之前的方法,我们得到:
在后面某一章里,我们会再回到这个问题。但让我们简要看一下我们所用逻辑工具的恰当性(adequacy),以结束本章。这里的情况并没有人们原本希望的那么简单。根据这种解释,语句 的真值完全由语句 的真值确定。类似的,语句 和 的真值也完全由 和 的真值确定。逻辑学家称像这样作用的运算为真值函数(truth functions)。但有很好的理由让我们认为,汉语中出现的“或”和“且”并不是真值函数,至少不总是如此。例如,根据 的真值表,“ 且 ”与“ 且 ”总是有相同的真值,即它们在 和 都为真时也都为真,否则都为假。但考虑这两句话:
“或”也有类似的问题。根据我们前面的解释,“ 或 为真”若 和 中的某一个为真。但假设有个朋友对你说:
于是你来了。根据 的真值表,这个析取式为真。但假如你发现你的朋友是在跟你开玩笑:你完全可以半小时后再出发也来得及。在这种情况下,你肯定会说你的朋友说谎了:他所说的是假的。同样,不仅析取项的真值是重要的,析取项之间某种联系的存在也是重要的。
在一个情形中,一个唯一的真值( 或 ) 被指派给每个相关语句。
为 当且仅当 为 。
为真当且仅当 和 中至少一个为 。
为真当且仅当 和 两个都为真。